Single Cell Dielectric Detection

The analysis of single cells is fundamental to understanding the important processes that underlie the workings of healthy cells and their normal growth and development, as well as in recognizing and tracking down how these processes become disrupted, potentially leading to adverse conditions and disease. Unfortunately, due to heterogeneity of biological cells present even in genetically identical populations, pinpointing these processes is not easy. To quantify the extent of variation between individual cells in a given population, it is necessary to analyse thousands or even tens of thousands of single cells. This daunting task has been made easier with the advance of novel techniques involving microfluidics which allows high throughput delivery of individual cells.

Changes in cells physiology are known to result in changes in their dielectric properties. Dielectric-based methods have emerged as a label-free, non-invasive, and integratable with microfluidic modality to study single cells. We integrate microfluidic platforms with sensitive electrical measurement systems and exploit their ability to characterize various biological phenomena at a cellular level. AC electrokinetics and impedance spectroscopy are the two primary dielectric methods we employ.

Related publications:

Wireless Biosensors

Information is coming!

Dielectric Cell Culture Monitoring

Mammalian cell cultures are used extensively in the industrial bioprocesses for production of therapeutic proteins. To ensure maximum productivity of recombinant proteins it is desirable to prolong cell viability during a mammalian cell bioprocess, and therefore important to carefully monitor cell density and viability. Fed-batch culture, an approach in which nutrients required for cell growth and product formation are fed to the bioreactor during cultivation, is pre-dominantly employed to extend the viable and productive phase of a culture. The yield and quality of products is affected substantially by the feeding strategy (time of feeding, concentration of nutrients, and type of nutrient). High concentration of nutrients increases the cellular production of metabolic byproducts notably lactate and ammonia, which are detrimental to protein productivity. Depletion of nutrients leads to starvation-induced apoptosis. An optimal feeding regime can be developed from simple assessment of the metabolic state of the cells during the course of culture in a bioreactor. We work on developing label-free on-line single-cell assessment technologies to continuously monitor the status of cells in pharmaceutical bioreactors. We have found that a noticeable change in cytoplasm conductivity of cells occurs at an early stage of apoptosis which can be employed as a label-free indicator of the event. By interrogating single cells based on their cytoplasm conductivity, we have been able to detect small population of apoptotic cells in a batch culture at an early stage. 

Related publications:

Modular Microfluidics

In this research, we aim to develop modular microfluidic platforms capable of performing analysis on raw biofluid samples. The system consists of connected modules that perform sample preparation, cell/analyte enrichment, and detection. Dielectrophoresis and hydrodynamic separation is used for sample preparation, bead-based affinity binding is employed for specific cell/analyte identification, and impedance spectroscopy is used for detection purpose.